1 AD-A058 871

UNCLASSIFIED

CARNEGIE-MELLON UNIV PITTSBURGH PA DEPT OF COMPUTER ==ETC F/G 9/2

AN INFORMAL DEFINITION OF ALPHARD (PRELIMINARY).(U)

FEB 78 W A WULF» P HILFINGER» R FITZGERALD FU44620=-73-C=0074
CMU-CS~-105 ; AFOSR=TR=78=1247 NL

L288C 0V ay Ad0) 3114 J(10

fCLA “ o ate Lnter

Rmr DOC!IMENTATION PAGE AEAD BETROCTIONS

- BEFORE COMPLETING FORM

2. GOVT ACCESSION NO.| 3. RECIP:t NT'S CATALOG NUMBER
AF SR .78°124%7 7Z

4. TITLE (and Subuu.) 5. TYPE OF REPORT & PERIOD COVERED

e —————————— . ————

= ’//’ m"

= § ; ‘
N_INFORMAL DEFINITION OF ALPHARD 1 (y'"te”m RN ‘
.A (pre |m|nary)/// _a‘nogi;u“gza
A R WAL . — /BLXRU-CS-105 |

7. AUTHOR(s) WT NUMBER(s)

uh62%-73-c -po7hy

" AREA & WORK UNIT NUMBERS

Wm. A. Wulf

ST

9. PERFORMING ORGANIZATION NAME AND ADDRESS

Carnegie-Mellon University

Department of Computer Science 61101€E
Pittsburgh, Pennsylvania 15213 ™ A02466/7

11. CONTROLLING QFFICE NAME AND ADDRESS 2. REPORT DATE
Defense Advanced Research Projects Agency <j[lFebruary 1978 ,/r
1400 Wilson Blvd. 1 Ye) o4

Arlington Virginia 22209 55

14. MONITORING AGENCY NAME & ADDRESS(if different from Controlling Office) 15. SECURITY CLASS. (of this report)

Air Force Office of Scientific Research/NM UNCLASSIFIED
Bolling AFB, Washington, DC 20332 15a. ggsgsg%;*CA“ON‘DOWNGRAWNG

16. DISTRIBUTION STATEMENT (of this Report) } - T -
' J

‘ E : /

,,...., 7 N /

3 /

Approved for public release; distribution unlimited.

17. DISTRIBUTION STAT ENT (of the abstract entered in Block 20, if different from Report)

’Robt\“'}}i,-h_,w y&l) 'L'z,uml “Ll Py v A)

‘f19- xEY WORDS (aomlnuc on ""‘B‘ side il noco -and identily WMM: number) -
/Ral lL fo| Lon fJf)r

et s ————

1]

20 ‘\BSTRACT (Continue on reverse side If necessary and identify by block number)

NThe Alphard language design has four major goals: (1) to support modern
programming methodology, (2) to permit practical program verification, (3)
to permit extremely efficient object code to be produced, and (4) to permit the
programmer to control certain implementation decisions == such as the
representation of data structures. Previous Alphard papers have explored
aspects of these issues as they relate to particular language features; to
facilitate these explorations these papers used a different syntax for the _]

DD , 2N’ 1473 LASSIFIED

04 08— —

UL EY CLALMYICATION OF Wi PAGE(When Date Fatered)

20. Abstract

\\Nlanguage. 1

The present report is a complete informal definition of Alphard that
both simplifies and unifies the language.”\

UNCLASSIFIED

(Preliminary)

An Informal Definition of Alphard

Paul Hilfinger
Gary Faeldman
Robert Fitzgeraid
Izumi Kimura
Raiph L. London
KVS Prasad
VR Prasad
Jonathan Rosenberg
Mary Shaw
Wm. A. Wult (editor)

CMU-CS-78-185

™ — =
! J £

pr——y

i - *k&'—.l___g_ i
!
IN SEP 191 | /

February 12, 1978

Computer Science Department
Carnegie-Mellon University
Pittsburgh Pa., 16213

This work was supported in part by the Advanced Research Projects Agency of the Department of
Defense under contracts DAHC 15-72-C-0308 and F44820-73-C-0074 (which is monitcred by the Alr
Force Office of Scientific Research), and in part by the Naticnal Science Foundation Grant DCR 74~
04187.

{8 UY vu Viwv

An Informal Definition of Alphard

Preface

The authors and their colleagues have been experimenting with a collection of ideas about
programming languages for several years. Our goais included determining the extent to which language
could support contemporary programming methodology, could aid in the construction of verifiable
programs, and, at the same time, could be a completely practical programming tool.

In the context of that exploratory spirit it seemed inappropriate to rigidly bind decisions about the
details of the language. Hence, although our explorations were carried out in a relatively uniform
notation and published under the name “Alphard®, there really never was an Alphard language. The
astute reader of our previous publications will have noted, and probably will have been frustrated by,
the fact that we feit completely free to change the notation from paper to paper as the needs of our
exploration seemed to warrant.

With this document we are breaking with our previous strategy. We are now defining a spscific
language which we expect to serve as the basis of our further research. In the future we do not
intend to aiter this language in the same free manner as we have In the past. There are two reasons
for this shift in strategy: First, although we didn't admit it, much of the language was frozen in our
heads, and the minor differences that appeared in published examples only served to confuse our
readers. Second, and far more importantly, we believe that the premises on which all the "data
abstraction” languages are based are untested in practice. We feel the need to gain experience
before we can proceed with any confidenca to tackie the next set of exploratory questions. To gain
that experience we need to freeze, and to implement, at least some portion of the language -- and that
is what we are now doing.

Since we expect to work in the context of the language defined here for some time to come, the
language is extremely conservative. Our past experience has been that simultaneously achieving
verifiability and efficiency is possible -- but delicate. Hence we have chosen to include only features
whose implications we fully understand. For example, we have omitted features dealing with
concurrency, exceptional-condition handling, and so on. We fully appreciate that these features will be
needed In a "production” version of Alphard; they are omitted here because they are still the subject
of our research.

The present version of this report carries the word "Preliminary” in its title; we hope to promptly
circulate a second version of the report from which this word has been elided. Our purpose in
circulating this first version is to solicit comment. We will deeply appreciate any and ail critiques of
both the *inngusge and its presentation. Such comments should be sent to Bill Wulf,
Computer Science Department, Carnegie-Meilon University, Pittsburgh, Pa. 15213.

BY

DISTRIBSTICN/AVAY ABMITY CBOLS

5 CIAL]

. 1.1.
1.2.

z.

2.1,
2.2,
2.3.
2.4.

3.1.
3.2.
3.3.
3.4.
3.8,

4.

4.1,
4.2,
4.3,
4.4,
4.5,
4.8.
4.7.
4.8.
4.9.
4.10.
4.11.
4.12.

8.1,
5.2,
8.3.
5.4,
§8.8.
5.8,
5.7.
5.8.
S.9.
S.10.
§.11.
s.12.

An Informal Detinition of Alphard

Introduction

Unusual Aspects of the Language
Styie and Conventions of the Report

Fundamental Concepts

Objects, Addresses, and Values
Type and Type Descriptions
Binding

Type Matching

Basic Lexical Structure

Symbols

Comments

Identifiers

Special Rewrite Rules
Special literais

Program Structure, Expressions and Statements
Program Structure, Blocks

Expressions and Statements
Invocations

Conditional Expressions
Value Expression

With Expressions

First Expression

Loop Statements

Exit Statements

N:all Statement

Inner block

Assert Statement

Declarations

Scope of Declarations
Auxiliary Declarations
Remote Definitions
Label Declarations
Object Declarations
Evaluation of Type Descriptions
Formal Parameters
Routine Declarations
Form Declarations
Abbreviations
Generators
Assumptions

10
11

14

14
14
185
15
17

19

19
18
20
22
23
23
24
25
25
268
26
26

28

28
28
29
29
29
30
32
a3
as
el
a7
39

e Arae Eae o

1] An Informal Definition of Alphard
Apx A: Collected Syntax 40
Apx B: Standard Prelude 43
B.1. Primitive Prelude 43
B.2. Standard Prelude 43
B.3. Implementation Preilude 44
Apx C: Special Identifier Assumptions 46
C.1. Generator routines 46
Cc.2. Extensibie routines a7
Apx D: A Complete Example 438
Apx E: Proof Rules 81

2 An Informal Definition of Alphard

Chapter 1
Introduction

The Alphard language has been designed to meet saeveral objectives simuitaneously:

To support contemporary programming methodology, and to encourage the development of
understandable and modifiable programs. Specifically, we wish to make the abstractions
used during the construction of a program explicit in the resulting program text.

To permit formal specification of properties of a program, and to permit practical verification
(proof) that the program satisfies these specifications.

To permit the programmer to control certain decisions that have traditionally been preempted by
the language implementation (e.g., the representation of data structures and method of
storage allocation).

To permit the Alphard compiler to generate compact, efficient code. With the aid of an
optimizing compiler, we cxpect to produce better code than is typicaily produced by
assembly language programmers.

In setting these objectives, our principal concern is with high quality, i¢al programs -- those which are
used extensively and are of significant size and compiexity. Many of these programs arise in the area
which has been called "systems": compilers, operating systems, and the like; such appiications are
representative of our concerns although they are not our exciusive focus. Our intended user
community consists of relatively experienced professionals rather than casual or student programmers.

The designers of a programming language generally make a number of philosophical decisions that
have manifold effects on the product of their effort. We, for example, believe that "power" or
"expressiveness" is best achieved through mechanisms which permit the programmer to synthesize
more complex facilities out of relatively simpler ones. Thus the composition, or structuring
mechanisms play the central role in Alphard; by contrast, for example, the collection of primitive data
types is small. The philosophical justifications for this decision are: (1) a/l of the familiar data types
can be buiit from Alphard's primitives, (2) the basic language is much simpler without a large collection
of data types, and (3) in making the composition mechanism strong enough to define the familiar data
types, we have also made it strong enough to define many more problem-specific ones.

Perhaps nowhere are the language designers' philosophies more evident than in those decisions
relating to the tradeoffs between expressiveness, safety, and efficiency. Alphard, like all languages,
strives for a balance between these, but our notion of balance is colored by the intended application
area(s) and user profiles. For these applications the long term costs of maintaining and running
programs far outweigh their initial development costs. Thus we have tiited the balence in favor of
those language attributes which contribute to efficiency and maintainability, possibly at the expense of
those which facilitate rapid program construction.

We have, for example, not emphasized “expressiveness" in the sense of a large collection of
constructs -- each of which is "just right" for a particular situation. We believe that we have,

An Informal Definition of Alphard 3

however, supportead expressiveness in a larger sense by encouraging program organizations which
convey important, abstract information about the way that the program works.

Similarly, we have emphasized safety and efficiency, sometimes at the expense of brevity or
convenience. This has led us to restrict some traditional constructs (e.g., scope and parameter rules)
and refrain from making some tempting generalizations. We are aware of many areas in which the
present design could be generalized in rather ocbvious ways; we have chosen not to do so, however,
when we might compromise the programmer's confidence in both the correctness and performance of
his program}

1.1. Unusual Aspects of the Language

Many aspects of programming languages have become fairly standard in the past decade. Alphard
constructs are intentionaily similar in style and meaning to the analogous constructs in other languages.
In particular, we have leaned heavily on the Algoi-Pascal cuiture; the syntax of expressions, variable
declarations, procedures, and so on, are all derived from this culture. The following, for exampie, is a
fragment of a valid Alphard program and is obviously similar to Pascal:

begin
var x,y.z:int;
It x2y then z:xz+1 fi;
end;
We expect that the similarity between the Alphard constructs and the analogous ones in other
languages will aid both the reader of this report and the programmers who use the language.

There are, however, a number of aspects of the language which differ significantly from many
traditional languages. This section provides brief notes on these aspects of Alphard. It Is, in effect, a
list of points at which the reader should be aware that things may not be as expected.

1. Type Definitions: The programmer may define a new type through a construct called a form.
The form permits both the specification of the abstract properties of (objects of) the new
type and the implementation of that type in terms of pre-existing types. Type definitions
(forms) may be parameterized; in particular they may accept other form names as
parameters. Such forms are called "generic” and define a class of types (e.g., array(T),
where T is a type, defines array-of-integer, array-of-real, array-of-set-of-integer, etc.).

2. Primitive types: Integer, real, complex, etc. are aot primitive types in Alphard; simiiarly,
structures such as arrays, records, and references (pointers) are not primitive. All of these
familiar notions are available, however. Either they are provided as "syntactic sugar”
through some standard abbreviations, or sise they are made available to the programmer as a
part of a "standard prelude” -- a set of standard definitions which (conceptuaily) prefaces
every program. Specifications for the standard prelude are included as appendix
B8 to this report.

1 We are convinced that deciding what not to include in a language design is much harder than inventing clever
new things to include.

4 An Informal Definition of Alphard

There are (only) two distinguished types in Alphard; they are distinguished in the sense that
they must be considered as part ¢! the language and not as part of the standard prelude.
They are "rawstorage" and "boolean". Specifications of these types and their associated
operations may be found in appendix B; informally, however:

a. Type "rawstorage": This type corresponds to a vector of contiguous, addressable,
untyped memory "cells" of conventional computers (we shall refer informally to a
rawstorage unit of length one as a "cell® or a "word" but we make no a
committment to the number of bits in each such cell); bit-wise logical, shifting, and
integer operations are defined on cells. All other types are (uitimately)
represented in terms of objects of type rawstorage, and the definition of this type
contains the basic mechanism for associating a "higher level" type with an area of
storage. Type rawstorage is distinguished (only) because 'ts implementation
Cannot be expressed in the language.

b. Type "boolean": Objects of type boolean are primitive (unstructured), and possess
values from a set designated (true,false}. Type booclean is distinguished in the
sense that, although it can be defined in terms of type rawstorage, it is needed
for the definition of other language constructs -- e.g., the conditional statement.
The customary operetions are provided.

3. Type Checking: Most modern programming languages contain some notion of the
"equivalence" of types and require that the types of actual parameters to procedures be
equivalent’ to those specified by the corresponding formal parameter definitions. The
presence of parameterized and generic type definitions in Alphard makes it advantageous to
replace the notion of equivalence by a more liberal notion of "matching”. Formal parameter
definitions specify a coilection of properties which the corresponding actual parameter must
possess, specify a collection of properties which are irrelevant, and provide a limited facility
for relating properties of distinct parameters. Together these define a class of valid actual
parameter types, and provide what is generally called "strong typing"; in particular, the
parameter specification and matching is sufficiently strong to ensure verifiability.

4. Scope Rules: Alphard's block structure is similar to that of Algol 60: declarations appear at
the head of a block, the meaning of an identifier is determined from its nearest enclosing
declaration, and so on. Unlike Algol, however, in Alphard the bodies of procedures and forms
do not inherit the names of variables availabie in enclosing blocks. The intent of these scope
restrictions? is to ensure that ail effects of an action can be determined by examining the
text immediately surrounding the action itseif. An additional benefit is that Alphard can be
impiemented (very efficiently) using a stack, but without the need for a display.

5. Operator Ovorl:udlngz The meaning of the usual infix operators (e.g., "+", "*" etc.) may be
extended to programmer-defined data types. The symbols for, the associativity of, and the
precedence of these operators are fixed by the language (see appendix C).

2 A particular consequence of the scope restrictions == together with companion restrictions on overlapping actual
perameters and selectors -- is to prevent unintended "aiiasing™. That is, they ensure that within a given scope
there is at most one name for a given storage ceil.

i

L - a—— —

An Intormal Definition of Alphard 5

8. Sel/ectors: The programmer may define the representation of a data structure by means of a
selector. Intuitively, a selector defines an algorithm for naming data, just as a procedure or
function defines an algarithm for computing values. A selector may be thought of as a
procedure that returns a pointer (reference, address) to an element of a data structure; the
syntax for defining selectors is therefore similar to that of procedures. "Pointer” is not,
however, a type in Alphard; no variables of this type can be declared, and hence the "value™
returned by a selector cannot be stored. The effect of this (coupled with some verification
requirements) is that selectors are "safe”; most of the (useful) flexibility of general address
arithmetic is retained without introducing its corresponding dangers. In particular, it is
possible to define a restricted style of “reference" variable completely within the language
and to ensure that this type is at least as safe as array indices in other languages.

7. Assertions: Assertions are permitted aimost everywhere and special syntax encourages
their use in appropriate places. The language in which the assertions are written, however,
is not defined by Alphard. The choice of that language is, we believe, a private matter
between the programmer and verifier.

8. iteration: Four iteration statements are provided, three of which are somewhat different
from what one might expect.

a. The do statement repeats its body until the body invokes an explicit exit.

b. The for statement serves a function similar to the for-step-until construct of Algol
60, bt does so in a manner that permits the programmer to define the type of the
contiol variable, the way it is initialized and incremented, and the nature of the
test for completion of the loop. These aspects ot loop control are all defined in a
form (usually a specialized form cailed a generator).

c. The first statement provides a special syntax for those common lcops that search
a data structure and perform one of two actions depending upon whether ar not an
element with a specified property is found.

The fourth iteration construct is the familiar while statement.

9. Sugaring: A number of familiar notions such as records and enumerated types are not
primitive notions in Alphard. They are provided, however, as abbreviations for the more basic
nations from which they are formedS

1.2. Style and Conventions of the Report

This report is a precise but informal definition of Alphard; it is neither a primer nor a completely
rigorous formal definition. It is intended, however, to be the reference for users, implementors, and
verifiers. To that end we have attempted to be as precise as our human limitations and the vagaries of
English permit. We have consciously adopted the style and tone of the Algol 60 report, which we
belleve remains the exempiar language definition.

The syntactic definition of the language uses conventional BNF with the following additions and
conventious:

3 pun intended!

6 An Informal Detinition ot Alphard
1. Key words (reserved words) are denoted by underlining.
2. Metasymbols are denoted by lower-case letters enclosed in angular brackets, e.g., "<stmt>".

3. The symbols { and)} are meta-brackets and are used to group constructs in the meta-
notation.

4. Three superscript characters, possibly in conibination with a subscript character, are used to
denote the repetition of a construct (or a group of constructs enclosed in {}). In particular:
"*" denotes "zero or more repetitions of"
“+" denotes "one or more repetitions of"
"#" denotes "precisely zero or one instance of".
Since it is often convenient to denote lists of things that are separated by some single
punctuation mark, we denote this by placing the punctuation mark directly below the
repetition character. Thus,
<vvv> nm <3> { | <¢> }
3 defines a <vvv> to be an <a> followed by either a or a <¢>,
SXXX> 1w <3>
4 defines an <xxx> to be a sequence of zero or more a’s.
<yyy> = <3> ,
defines a <yyy> to be an <a> foliowed by zero or more s separated by
commas.
<z22> um {<a> | };
defines a <zzz> to be a sequence of one or more things separated by

semicolons -- where the “things" may be either <a>s or s.
<yuu> w <a>®

defines <uuu> to be either "<a>" or simply ""

The semantics of the language are described in English. Proot rules for some constructs are provided
in appendix E.

Certain portions of this report describe processes in terms of extra variable creations, text
replacements (copying), or other actions. These are informal expositions and at all times the language
(compiler) is required to only produce the same net semantic effect. Such expositions should be
interpreted in their intended, helpful sense. Obscure consequences of the particular processes will not
be supported.

An Informal Definition of Alphard 7

Chapter 2
Fundamental Concepts

The following chapters define the syntax and semantics of Alphard; in this chapter we describe
certain pervasive notions that are used in the definition.

A complete Alphard program consists of a collection of declarations and statements which are
elaborated? to produce some desired effect. Declarations define forms (which, in turn, define classes
of types), routines3 (which may be /nvoked to evoke further elaboration), variables, and a number of
other entities of lesser immediate importance. Statements define actions to be performed; they may
specify selective or iterative elaboration of component statements and expressions. Of particular
immediate interest, because they cover the major ideas we wish to discuss, are the notions invoived in
the elaboration of the declaration of variables and in the elaboration of routine invocations.

The elaboration of a variable dec!aration, e.g.
var x:vector(int,1,10)
begins with elaboration of the type description (vector(int,1,10)), followed by /nstant/ation of an
object of the type resulting from this elaboration (instantiation invoives both allocation and
Initialization); finally, a binding of the name to the instantiation is performed.

The elaboration of a routine invocation, e.g.,
f(x.y)
begins with the elaboration of the actual parameters (x and y), followed by matching of the nominal
type of the actual parameters with the type descriptions of the positionally corresponding formals; if
this matching succeeds a set of bindings is rurmrmod6 and the routine body is elaborated.
3

The words and phrases in bold-face above, type, object, ..., are representative of the notions we
shall discuss in this chepter. Because of mutual dependencies between the notions, however, we shall
not discuss them in precisely the order in which they are mentioned above. We have chosen instead
an order which attempts to minimizes the forward references.

2.1. Objects, Addresses, and Values

Intuitively an object is a generalized (and typed) storage cell, or variabie; it is used to hold the
value of some abstract data type.

4 We use the word “elaboration®, in preference to “execution®, to connote actions taken at "compile time® as well
I as at “run time". Elaboration may be thought of as an ideslized, direct execution of the textual version of the
] Alphard program.

5 The word “routine” is used systematicaily to cover the notions of prog, yproc, fung, and sel.

6 At this point a resuit object may aiso be instantisted, but this is not essential to the present discussion.

8 An Informal Detinition ot Alphard

An object possesses a unique (generalized) address, a type, and a value (or state). Objects may
be dynamically created and destroyed. The address and type of'an object are fixed throughout its
lifetime, but the value it possesses may be aitered.

An object may be primitive, in which case its values (l.e., the values it may possess) are members of
an arbitrary set. Otherwise, the object is composed of a sequence of one or more (previously created)
objects, called its concrete components. The value of such an object may be taken to be the
sequence of values of its concrete components. For the purpose of the following exposition, if x
denotes an object, x; denotes its ith component object.

Two objects may over/ap; that is, their values need not be independent. A camman case, though not
the only one, is that one object wholly contains the other, as a vectcr contains its elements. Two
objects that do not overlap are called independent. Any logical dependency (i.e., overlap) between
the values of two objects is fixed. A newly created object independent of all previously existing
objects Is called a new object.

The creation of an object is generaily associated with allocation of storage for the object and
initialization ot its value. The entire process is cailed /nstantiation and the rasuiting object is cailed
an instantiation of its type. The first step of instantiation is the elaboration (evaluation) of a type
description to yield a type (see section 5.6). Next the object is created. For primitive objects
this is a direct operation; otherwise it Is achieved by (recursive) instantiation of its concrete
components. (Note that at the moment of creation the generalized address of the object is
determined.) After ailocation, the initialization procedure defined with the base type of the object is
invoked as described in section 5.5.

Objects are destroycd by first invoking a finishing procedure defined with the base type of the
object (as described in section 5.5), then de-allocating the object (for primitive objects) or
destroying its concrete components (for non-primitive objects).

2.2. Type and Type Descriptions

Intuitively, type is that property of an object which defines its possible behaviors? . More formally, a
type characterizes the possibie values (states) of an object and the set of operations that may be
applied to it.

There are two explicit syntactic manifestations of the notion of type in the language: form
declarations (which define a class of types), and type descriptions (which describe a class of object
types that may be bound to an identifier in declarations or formal parameter spacifications).

Form declarations are defined in section 5.8. For our present purposes it is sufficient to
note that: (1) every form has a name, (2) a form may be parameterized, and (3) the form declaration
makes available various operations. A subset of these operations (the side-effect producing ones) is
called the vpdate set.

7 Note that objects, not values, are typed. Indeed naked vaiues do not exist in Alphard -- vaiues only exist in
cbjects. Thus, for example, we may sgeak informally of the "valus produced by a procedure”, but in fact the
procedure returns an object that contains the vaive.

An informal Detinition ot Alphard 2

Type descriptions are used in three contexts: (1) in variable declarations, where they define the
type of an object to be instantiated, (2) in formal parameter specifications, where they define the
class of legal actual parameters, and (3) in routine definitions, where they specify the type of the
object returned. In addition, in both contexts type descriptions define the nominal/ type of any object
bound to a particular identifier. Thus, the nominal type of an object is the information about its type
that can be inferred by accessing the object through a particuler identifier.

The distinction drawn in the last psragraph between "type" and "nominal type” is an important,
though possibly subtle, ane. A "type" is associated with an object and determines all possible
behaviors of that object. A "nominal type" is assoclated with an identifier which, in turn, Iis bound to an
object. The nominal type associated with an identifier determines the possible behaviors that can be
caused through that identifier. in the general case a nominail type will be “less specific* than the type
of the object to which the identifier is bound.

in the following sections we more formaily define tha notions of type, type descriptions, and nominal
type.

2.2.1 Type

A type resuits from the elaboration of a type description (see section 5.6) and consists of a
base type, a (possibly nuil) sequence of actual type qualifiers, and an update set.

A base type is a form name; it uniquely identifies a class of types. For example, the base type of
"vectorireal,1,10)" is "vector®. In the following, if T is a type, Base(T)® represents the base type of
T

An actuasl type qualifier is intuitively an actual perameter in a type description; hence it corresponds
to a formal parameter In a form definition. It may be an cbject address, an object, a routine name, a
type, or a marker denoted u_n_lx5 . In "vector(real,1,10)", the actual type qualitiers are "real”, *1%, and
"10".

A type none of whose qualifiers is unk is called 8 full type; a type with at least one unk qualifier is
Called a pertial type.

The update set consists of a set of routine designators from among those defined with the base
type; specifically, the update set consists of those routines which may have a (visible) effect on an
object of the type. If T is a type, Update(T) denotes its update set.

It Tis a type, then Quai(T) denotes the sequence of actual type qualifiers of T and Quaii(T) denotes
the ith element of the: sequencs.

8 Lere and in the sequel we shall use functions such as Base(T), Qual(T), Update(k), etc. to explain semantic
sspects of the language; these functions are oniy part of the semantic exposition, not constructs in the language
itself,

S The marker ynk, which is to be read “unknown", denctes situstions in which the corresponding form formal is
not considered a part of the nominai type.

10 An {nformal Definition of Alphard

2.2.2 Type Descriptions

A type description Is a syntactic construct which describes a class of types and may designate
restricted access to objects of those types. A type description consists of a base type, a sequance

ot formal type qualitiers and an update set. The elaboration of a type description yields a type or a
nominal type.

A base type is (as above) a form name.

A formal type qualifier is either the marker unk or eise a description of an object address, an object,
a routine, or a type. When used to specify a formal parameter, a formal type qualifier may be an

identifier preceded by a "?" symbol; in such cases an "implicit binding" is implied (see section
2.4).

The update set consists of a set of routine names from among those defined with the base type.
Update sets give restrictions on the effect-producing actions that may be applied to an object‘o .tD
is a type description, Update(D) denotes its update set.

2.2.3 Nominal Type

A nominal type, like a type, consists ot a base type, a (possibly null) sequence of actual type
qualitiers, and an update set. These notions are defined exactly as in the definition of type.

A type is ailways associated with an object. A nominal type, on the other hand, is always associated
with an identifier. The nominal type of an identitier may, in the general case, be less specific than the
tyve of the object to which that identifier is bound; however, the type of an object will always match
the nominal type of the identifier.

2.3. Binding

During elaboration, some identifiers become associated with == bound to -- entities; these entities
may be objects, routines, or types. The binding of identifiers to objects is of particular interest and
includes both the declaration of variables (and associated instantiation of an object) and parameter
passing.

In all contexts in which an identifier may become bound to an object (i.e., in a variable declaration or
formal parameter position) there is an associated type description. In the case of a variable
declaration, this description determines the type of the object created. In the case of a formal
parameter, the type description defines the types of allowed actual parameters. In both cases,
however, the type description is elaborated ta a nomiaal type which determines the permitted uses of
the object identified through this identifier.

10 1 practice we allcw maore than just the names of effect-producing operations in the update set part of certain
type descriptions, notably those which specify generic formal parameters. In such cases we allow non-effect-
producing attribute names as well; this is merely a shorthand for an “assumes clause™ (see section 5.12).
This abbreviation is permitted because of its similarity of intent to the update sel: it describes a set of attributes
which the routine or form body requires for correct operation.

ORISR

An Informal Definition of Alphard 1

In both declarative and formal parameter positions the description of a binding may be preceded by
either var or const. The only difference between the two is that in the latter case (const) the update
set of the identifier is set to empty; in the former (var) case the update set is determined from the
associated type description. A particular consequence of this mechanism is that parameters in const
positions are, intuitively, passed "by reference” but cannot be modified by the called procedure.

If k Is an identifier bound to an object, then we refer to this object as Obj(k) and to its associated
nominal type as Type(k).

2.4. Type Matching

The process of parameter binding requires a notion of what it means for an actual parameter to
match, or satisfy, a formal parameter spacification. Intuitively this process invoives determining that
the nominal type associated with the formal parameter “includes"®, or “covers"”, the nominai type of the
actual -- that is, ensuring that the behaviors permissibie through the formal parameter name are among
those permissible through the actual parameter name. For simplicity we break this process into three
subprocesses: subsumption, syntactic satisfaction, and implicit binding. Each of these is used for a
different kind of actual/formal matching as specified below.

A list of actual parameters
81 v eeee 8p
is said to match a list of formais
fq:tq, foito, o fnitn
where the a; are objects, types, or routine names, it there exists a binding of objects, types, and
routines to the implicit formals in the t; such that if each f; is bound to a;, then for each |,

1. It t; is a description of a routine (proc, vhroc, func, or sei), then a; is the name of a "proc*, ...,
or "sel" with formal parameters identical to those of t; after possible renaming of formal
parameters.

2. If ¢ is "form" (or “pform), then a, is a type (it a; is a partial type t; must have been g!orm)
and the assumed definition of f; (see section 5.12) is syntactically satisfied (see
section 2.4) by a;.

3. If t; is a type description, then a; muat be an object such that when t; is elaborated, t,
subsumes Type(a)).

In addition, all implicit formals bound to types must be bound to types syntactically satistying the
assumed definition of the form (see section 5.12).

The notions of subsumption, syntactic satisfaction, and implicit binding are defined below; we begin
with the notion of subsumption -- the kind of matching used when an object parameter is expected.

_I—

12 An Informal Definition ot Alphard

Deftinition: We say that a (nominal) type Ty subsumes a (nominal) type T, (in symbolis, T¢>>T
iff:

a)

1. Base(Ty) = Base(T,).

2. length(Qual(Ty)) £ length(Quai(T,)). Note: if length(Qual(Ty)) < langth(oual(‘l'.)). the
formal quaiifier sequence of Ty is extended on the right with a sufficient number of
unk's.

3. For each qualifier of Tf. i.e., Qucli(T'):
a. If Quali(Ty) is unk, Quai(T,) may be anything.
b. If Quali(T¢) is a type, Qual(T,) is aiso a type and Quali(T¢)>>Qual(T,)

c. If Qual|(T) describes a routine, then Quai(T,) Is aiso a routine and Qual(T,)
matches Quali(Ty).

d. If Quali(Ty) is an object of base type U, Quaii(T,) is aiso an object of base
type U and the value of the result of applying &= for U to Quai(Ty) and
Qual;(T,) would be true.

4. Update(Ty) < Update(T,).

In some cases condition 3d cannot be checked at compile time. At the discretion of the implementors,
the compiler may provide the options of generating warnings, generating checking code, or refusing to
compile such cases.

Definition: Two types are identical it each subsumes the other.

In Alphard, both routines and forms may be "“generic”. That is, they may require types as parameters
== or, aquivalently, thay may have parameters whose type is not specified in the routine (M) header.
In such cises there will be an "assumes clause"” which specifies the properties that the routine (form)
assumes about the generic parameter; this clause gives sufficient information to check all uses of the
parameter locally. In order for a given use of the form or routine to make sense, the actual parameter
must at least meet the syntactic assumptions made about it. Thus the notion of matching formal and
actual parameters in such cases involves of determining whether the actual parameter syntactically
satisfies the formal parameter assumptions o

I More gererally, of course, a proof will be required {0 demonstrate that the actual parameter makes semantic
sense as well.

An Informal Detinition of Alphard 13

Detinition: Given an assumed declaration of a generic parameter, T:
form T
specs
<definitions of fy..f>
and a candidate actual type
Q(aq,ap,...)
whose base type is declared
form 0(91 sove)
specs ...
we say that the type Q(ay,...) syntactically satisties T if textual substitution of "Q(aq,...)" for
“T" uniformly throughout the specifications of T resuits in T's specifications containing
declarations of f4,.f, Identical to those in Q's specifications (ignoring assertions and
implementations), though possibly only atter suitable renaming of formal parameters.

In the process of determining whether an actual parameter of type T matches a formal parameter
specification we may discover that Qual; of the formai is an identifier preceded by "?". Such identifiers
are cailed "implicit formal parameters®, and are “Implicitly bound" to corresponding (qualifiars of the)
actual parameters. Such bindings are performed before other matching.

Deftinition: Let Ty be the formal type and Tq be the actual type. If, in determining whether
T4>>T,, Base(T¢) or Qual(Ty) is an identifier preceded by a "?", the identifier is Implicitly
bound to the corresponding Base(T,) or Qual(T,) and becomes an “impiicit formal parameter®.
The nominal type of an implicit formal is made identical to the nominal type of the corresponding
form formal. Note that only one binding is established for such identifiers, so muitiple
occurrences must be consistent.

In the procedure deciaration
proc P(x:vector(int,?ib,?ub)) is ..
for exampie, “Ib" and "ub™ are such implicit formais. They are, respectively, the lower and upper
bounds of an actual parameter vector. Thus, if some program frngm‘ht conteins
... var y:vector(int, 1, 10); ... P(y) ...
then 1 and 10, respectively, will be implicitly bound to the formais Ib and ub.
~
The following table attempts to recap the essential aspects of the notion of actual/formal parameter
matching:

Formal Actual Matching Rule

x:form full type syntactic satisfaction

x:pform type syntactic satisfaction

x:<{routine description) routine name point 3 of match rule

x:?T object Type(object) must syntactically satisty T
x:{type description) object subsumption

aob ject object equality under &= for the type of the formal
unk anything slways matches

7 match after implicit binding

routine name routine name same routine

o

- T PPN Y
L eEEEEEE—————— ”

14 An Informal Definition of Alphard

Chapter 3
Basic Lexical Structure

3.1. Symbols
<letter> - ALB - 0 Z e l..il 2
<digit> - O 1 F daus] 9
<alphanymeric> n- <letter> | <digit> | '
<special symboi> - <basic symbal> | <aperatar>
<basic symbol> e begin | end | endof | ;|| C 1)) 8], =] &I
it | then | else | fi | case |
£ | esac | fo | with | in | ni | first | suchthat | from | do | od |
for | exitloop | leave | skip | assert |
var | const | aux | as specified | = | init |
final | wnk | ? | proc | voroe | func | sel | labei |
note | eton | ! | eiit | elof | pform | while | > | < | .| |
copy | alias | form | inline | pre | post | ryle |
is | forward | extarnal | specs | impl | ghared |
invariant | initiaily | axiom | repmap |
record | enymerated | gssymes | valye | genmerater
<operator> e <binary operalor> | <unary operator>
<binary operator> = rl'l/lul_mlol-|<|sl-l°lzl>lml9_imﬁlﬁ_lml
<assign op>
<ynary operaicr> u- +}|-)not

Typographical features such as blanks (spaces), ends ot lines, etc., are generaily not significant (but
see section 3.4.3); an implementation may use them to delimit identifiers, numbers, etc. Outside
strings, no such features may appear immediately after the symbol "&" or "?", or around the symbols

“." and "$" when they are used as described in sections 3.4.2 and 4.3.

Upper and lower case letters are distinct. Alsg, note that the grave symbol is considered a
(significant) alphanumeric and thus may be used in constructing identifiers; it Is intended that this be
used to improve program readability by separating mnemonically signifcant portions of such identifiers.

Basic symbois such as begin are conceptually singie charactaers and are underiined in this report to
emphasize that fact. An implementation, however, must reserve (all upper/iowsr case spellings of) the
corresponding identifiers to denote these symbois. Thus "BEGIN", "begin", "Begin“, etc. are all

interpreted as the basic symbol begin; we strongly encourage, however, consistent use of one spelling
in a given program.

3.2. Comments

The tollowing two commenting construots are lexically equivalent to a space (blank) character when
they appear outside of strings.
note <any sequence not containing the lexeme "eton"> eton
!<any sequence up to end of line)
The first commenting construct encountered in a line takes precedence over any contained within it.

An Informal Definition of Alphard 18
3.3. Identifiers
3.3.1 Syntax
<identifier> e <lotter> {<alphsnumeric>}*

<gpecial identifier> = &start | &iimh | &next | &done | &value | &subscript | &<operator>
<identifier list> - <identifier>,

3.3.2 Examples
A
ad
TheDogTheCatChased
The'Dog'The'Cat'Chased
the'dog'the'cat'chased
start
&start
&=
All the above identifiers are distinct.

3.3.3 Semantics

identifiers have no inherent meanings. They identity objects, forms, types, procedures, selectors,
statements, and parameters. Deciarations establish the meanings of Identifiers within particular
scopes.

Two identifiers are dufined to be similar if they differ at most in the typographical case used to
spell them; thus "ABC*®, "Abc", "aBc", etc. are all similer. Except when used as routine names, similar
identifiers may not be declared in the same acopo’z .

Special identitiers dencte entities of special significance in the language. They mey be defined but
never directly referenced; they are invoked as the consequence of using some other construct defined
by the language. A simple example of the use of such symbois appears in section 3.4.1, where
the language-defined notion of "+" invokes the user-definable function named "&+"; more Interesting
examples may be found in sections 4.7 and 4.8. (Requirements on the definitions of
such routines appear in appendix C.)

3.4. Special Roylrlto Rules

In order to simplify the language definition, a number of famillar and convenient notations are
provided indirectly rather than as a part of the syntax. To accomodate these, we defire several
"rewrite rules" that transform programs from the more familiar notation to that described by the report.
These transformations convert infix operators to function invocations, provide "qualified names", and
Introduce semicolons. We shall use the notation C; ==> C5 to describe some of these transformations;
the notation means that constructs of the form C4 are transformed into constructs of the form C,.

127his restriction is imposed in order to prevent subtle errors arising from the use of similar identitiers in the
same scope. Routines are exempled from the restriction in order to permit operator overloading.

16 An Informal Definition of Alphard

3.4.1 Operators

Neither the syntax nor semantics of Alphard includes the traditional notion ot arithmetic or bouolean
expressions with infix operators. Rather, the language is defined as though all operations were
expressed as function invocations. In order to permit the user to write programs in the more familiar
infix-expression format, however, two transformations are performed. First, the input text is fully
parenthesized in order to observe the following precedences and associativities:

1. Associativities: The operators of highest and lowest precedence are right associative; the
remainder are left associative.

2. Precedence:
t (highest precedence)
* / div rem
¢ e
£ <= # > 2
not
and cand
or cor
imp
2= #:= -z %z etc. (lowest precedence)

After being parenthesized, expressions are converted to functional form. |f o and £ denote arbitrary
unary (monadic) and binary (diadic) operators, respectively, then the following trarsformations are
performed:

<termd>y [<termdp --> &L(<termdq,<termd ;)

o {term> -=> &x(<{term))

<term>4 M:= Ctermdy -=> &:=(<termdq, &M(<termd 4,<termd5))
where the <{term>s denote any phrases balanced in parentheses.

After being placed in functional form, three of the relational operators are rewritten as the boolean
negation of one of the remaining three:
&#(ty,tp) -=> ¬(&=(ty,t5))
&S(ty.tp) ==> ¬(&>(ty,t5))
&2('1.‘2) --) ¬(&((t1 tz))
in addition, two of the boolean operators are rewritten as condltional expressions:
ty 8809 Ty =7 %) an i gise talse
Gy corty == ifty thentrue sisety fi
This rewrite is required to avoid the possibility of undefined argument values in invocations.

Note that, as stated earlier, symbols ot the form &<{operator> may be defined by the user. Thus, by
giving a definition to "&+", the programmer gives & definition to the operator "+"; this does not allow
redefinition of existing cperators, but does allow these operators to be extendesd to new types.

3.4.2 Name Qualification and Subscripting

It is often convenient to refer to the (visible) components of an object by symbolic names; for
example, the components of a record have traditionally been named Iin this way. The conventional
syntax allows "X.y" to denote the y component of X.

An Intformal Detinition of Alphard 17

The syntax of Alphard does not support such “dotted name" qualification directly, but instead uses
the functional form, y(X). To permit the dotted-name notation and user-defined subscripting, qualified
names are transformed in two steps. First, dotted names are eliminated in favor of a functional form:

<qualname).{identifierd> <> <identifier>(<quainame>)
where <quainame> is any sequence of identifiers (including special identifiers), '.'s, 'S's, end
sequences of lexemes balanced and enciosed in parentheses or square brackets. The rule is applied
right-to-left; thus, for example

Ay -=> y(A)

Q.g[s.t].t -=> f(g(Q)[t(s)])
After ail dots have been removed, square brackets are removed:

<termd>[<expression list>] --> &subscript(<term>,{expression list>)
Thus, tha exampie abdve becomes

Q.gs.t].f -=> f(g(Q)[t(s)]) -=> f(&subscript(g(Q),t(s)))
Note that the user may define the selector &subscript and hence may specity the access algorithm for
a type.

3.4.3 Automatic Introduction of Semicolons

The effect of the following transformation is to eliminate the need for explicit semicolons to separate
declarations or statements when those semicolons would fall at the end of a text line. According to the
syntax in this report, certain phrases are separated from each other by semicoions. In those cases
where the final lexeme on a line could end such a phrase, e.g.,

end,), fi, esac, fo, ni, od, exitioop
and the next lexeme (i.e., exciuding comments) could begin such a phrase, e.g.,
begin, (. if, case, with, first, do, for
th# compiler automatically inserts a semicolon between the two uniess, on the basis of preceding

symbols it is possible to determine that doing so wouid render an otherwise syntacticailly valid program
into an invalid one.

3.5. Special literals

Certain well-established literal denotations exist for some types (e.g., integer, real, boolean).

3.5.1 Syntax

<special literal> - <unsigned integer> | <unsigned real> | <string> | <booclean> | <radix>
<unsigned integer> = {<digit>}*

<unsigned real> 1. <unsigned rational>{E<scale-factor>}® | <unsigned integer>E<scale-factor>
<unsigned rational> = <unsigned integer>.<unsigned integer>

<scale-factor> e {+|-}"<unsigned integer>

<string> e “<any sequence of characters with all quotes doubled>"

<pooiean> - true | faise

<radix> - {<alphanumeric>}* s<alphanumeric>

3.5.2 Examples
3
147.5€-3
32#8
true

18 An Intormal Detinition of Aiphard

"ABcdEF"
"He said,""Ha!"""

3.5.3 Semantics

<radix> literals are ‘of type rawstorage. The <alphanumeric) tollowing the "#" character specifies
the representation base. The vaiues of the alphanumerics are interpreted as follows: 0-9 denote 0-9,

A-Z denote 10-35, a-z denote 36-61. Note that 0, 1 and ' (zero, one and grave) are not legal base
denotations.

An Informal Deflnition of Alphard 19

Chapter 4
Program Structure, Expressions and Statements

4.1. Program Structure, Blocks
A compilation unit may be either a block or a set of declarations. If it s a block, It is a "program” in
the traditional sense -- a stand-alone computation. if it is a set of declarations, the scope of the

declarations is system-dependent.

4.1.1 Syntax

<compilation unit> = begin <block> end | <exec dec list>

<block> e {<exec decl list>;}* {<stmt>}; (;}*®
<exec decl list> uw { <exec deci> };
<exec deci> um <var decl> | <const deci> | <proc deci> | <form deci> | <iabei deci>

4.1.2 Semantics

A bilock specifies a computation whose effect is as though the foliowing order of execution were
observed: :

1. Elaborate the declarations in the order given (see 2.2 and 5.5).
2. Elaborate the statements (<stmtd>s) in sequence (aside from exits; see 4.9).
3. Destroy the objects created in 1 in the reverse order of declaration.

The scope of all deciarations in a block is the text of the biock, where not superseded by nested
declarations.

4.2. Expressions and Statements

Expressions and statements designate actions to be performed. Their alaboration results in changes
In the execution state of the program. Expressions differ from statements only in that their elaboration
may "produce values” as well as performing other actions; statements only perform actions. For
definitional brevity and convenience, every expression |s considered to be a statement, but not
conversely. When an expression is used in a context requiring a statement, its “value” is discarded.

Somewhat more precisely, the “value produced by an expression” is an object resuiting from its
elaboration; the type of this object is uniquely determined by the rules stated in the remainder of this
chapter. This resulting (unnamed) object exists until any immediately enclosing expression or
statement that uses it has finished execution,

20 An informal Definition of Alphard

4.2.1 Syntax

<expression> nw <invocation> | <conditional expression> | <value expression> |
<with expression> | <first expression>

<stmt> um <expression> | <loop stmt> | <exit stmt> | <null stmt> |
<inner block> | <labeled stmt> | <assert stmt>

<labeled stmt> - <identifier> : <stmt>

4.2.2 Semantics
Statement labels are used by exit statements (section 4.9). The effect of an exit
statement is to force control to the paint immediately following the labeled statement whose labeil is

used in the exit. Labels must be declared (see section 5.4) and may be used to labei only
one statement within the scope of their declaration.

4.3. Invocations

4.3.1 Syntax

<invacation> w <special literal> | <simple invacatian>{<actuals>}® | (<invocation>)
<actuals> - ({<actual>},)

<actual> e <expression> | <type description>

<simple invocation> = {<identifier>$ }* <identifier> | <special identifier>

Infix and prefix operators fall under this syntax by the rewrites of section 3.4.1. Subscripting,
denoted by "[...]", falls under this syntax by the rewrites of section 3.4.2. Note: <(special identifier>s
may not appear in source programs; they resuit only from these rewrites.

4.3.2 Examples

The most obvious <invocation>s are those denoting routine "calls”, e.g.:
sin(x)
integrate(F,a,b,eps)
in addition, however, <invocations) resuit from the rewrite rules for infix operators and subscripting,
e.g.:
&:=(a, &+(b,c))
&:=(x, &subscript(V.i))
Finally, <invocation)s occur as part of type descriptions:
vector(int, 1,unk)

4.3.3 Semantics

A simple invocation may designate a type, an object, or a routine (a procedure or selector) as
indicated in chapter 5. Identifiers may designate muitiple entitles in any given context
(uperator overloading), so some means of resolving the conflict is necessary. An identifier may be
qualified on the left by the name of the form containing its definition; such qualifiers are separated by
“$". Alternatively, the proper definition may be determined by examining the types of the actuais --
that is, by choosing that definition for which type checking (section 2.4) succeeds. It is an error if the
compiler cannot disambiguate statically (i.e., at compile-time).

Assuming that the entity designated by G is uniquely determined, an invocation such as:
G(eq.ep....e,)
denotes an eiaboration and possibly a resuiting value as follows:

An informal Detinition of Alphard 21

1. The actual purameters, e;, are elaborated in an undetined order. An @) designating a routine
without an argument list designates that routine, rather than the value resulting from its
execution. The resuits of this elaboration are objects, types, and routines (see section
5.6 for the evaluation of partial types).

2. The number of formal parameters of G must be n (n20). The actuals must match the formais
of G (see section 2.4); it is an error if they do not.

3. Each formal parameter of G which designates a routine (as in “f:proc(...)¥), a type (as in
“T:form"), or a reference parameter (as in "var x:.." or "const x:..") is bound to the
corresponding e; (aiso see section 5.7).

4. Each object formal (see S5.7) with an empty <binding> Is treated as If it were
specified const (see below).

S. For each formal identifier, k, designatad to be a const parameter (see section 5.7),
Update(k) is made empty. For ail other k bound to objects, Update(k) is derived from the
type description of the formal parameter.

6. car and const parameters are checked for possible overlap (see section 2.1). In order for
the <invocation) to be legal it is necessary that either '

there is no overiap between an actual parameter that stands in a var position and any
other actual in either a var or const position.

all overiapping positions are designated ailas in the formal parameter specifications.

7. For each formal identifier, k, designated to be a copied parameter, a new object of the same
type is instantiated. The values of the actual parameters (see sections 5.6 and
5.7) are copied Into these variables from the corresponding e; using the "&:s"
procedure defined for that type; it is an error if the "&:=" procedure is not defined for the
type.

8. If G is a routine and returns a value, or if it is a selector (see section 5.8), its
definition contains a type description which specifies the type of its resuit. This description
is elaborated. If G is a vproc or func, an object of the type is instantiated to receive the
“vajue" that will be returned. If G is a selector no object is instantiated; the type
description defines the type of the object whose (generalized) address is returned. Note
that a vproc or func must specify a full type for the result; a sel need only specify a partial
type.

9. If G is a routine its body is elaborated with the established bindings. If G is a type
description either an instantiation or a matching is performed, depending on the context.

10. Any auxillary objects (l.e., copied parameters or actuais which are themseives result
objects of procedures) are deallocated.

It should be noted that, by the rules above, the invocation of a parameteriess procedure, P, is
necessarily written "P()".

22 An Informal Definition of Alphard
4.4. Conditional Expressions

4.4.1 Syntax

<conditional expression> :w <f expression> | <case expression>

<if expression> w if <expressian> then <block> { elif <expression> then <block> }* {else <block>}* fi
<case expression> = gase <expression> of <case> { elof <case> }* { else <block> }*® esac

<case> 2 {<expression>}, :: <block>

4.4.2 Examples
it a[i]>max then maxp := i; max := a[i] fi
y :2 if x>z then x else z fi
if a<b then t := 1 eiif aCc thent:= 2 elset:s3 fi
case IC ot
ADD:: MB := C[EA]; R := R+MB elof
SUB:: MB := C[EA]; R := R-MB elot
MUL:: MB := C[EA]; R := R"MB eise
ERROR
Saec
T := case n of 1::MALE elof 2::FEMALE else NEUTER esac

4.4.3 Semantics

Conditional expressions denote expressions and statements to be evaluated conditionally. Such an
expression has a value if

a. All <block>s In it are single expressions,

b. All these expressions are of identical type (this type becomes the type of the expression),
and

Cc. An else clause is present.

The expression
if 84 then S, alit 83 then 3 ... Uit B, then Sy, 8ise Spyq f
is equivalent to
£ 8 then 8, siee
i B3 then S sise

it B, then S, aise Spyq Ml

In the expression
it B then Sy else S fi
B must have a resuit of type boolean, and the elaboration of B must not have observable effects. If
the value of B is true, S, is evaluated, otherwise Sy is evaluated. If the if expression occurs in a
context requiring a value, the value is that of the expression chosen (by the rules above, Sy and Sy
must be simple expressions of the same type). In the absence of an eise clause, Sy is taken to be
skip (see section 4.10).

An Informal Definition of Alphard 23

In the expression
case Eq of
E1 10 oee 51"1 i1 31 ._lQI
Ezqy - Ean :: Sp elof

Emtr oo Emnm it Sy, else
Sme1
esac

EoEqqs cns Emn,,, must all be expressions of the same type. Eg is evaiuated. The Ejj are evaluated (in
unspecified order) and the results are compared with Eg using the &= operator for Type (Eq). It iq an
error if there is no such operator. The evaluation ot Eg and the E"'s must not have observable effects.
As soon as a match yields true (say with Ejj) S; is evaluated. if all matches fail, Sy, is evaivated.
Exactly one block S is evaluated for each correct evaluation of the case expression. The value of the
case expression is that of the S| evaiuated (again, each S| must be a single expression).

4.5. Value Expression
4.5.1 Syntax

<value exprassion> := vaiye <identifier>{<obj type>}® gt <block> fg

4.8.2 Examples
S := value y:int of y:=0; for x:invec(A) do y:®y+x od fo
value A of Munge(A,43) fo

4.5.3 Semantics

A value expression is used to convert a <block), and hence & sequence of declarations and
statements, into a (value-yielding) expression. in the expression
value x:T of S fo

the variable x (whosc-a'copo is S) is instantiated and S is executed. If ":<obj type>" is omitted, as in
valve x of S fo

the existing instantiation of x is used. in both cases, the resuit of the vaiue expression is the object
Obj(x).

4.6. With Expressions
4,6.1 Syntax

<with expression> = with <with list> i <block> ni
<with list> ue { <identifier>:<invocation> },

4.6.2 Examples

with Z:A(i].son(k] in Z.age := O; Z.number := k ni
with R:x.y.z, Q:x.yw invars:T;s:3Q;Q:aR;R:=s ni

a et £ e

24 An Informal Definition of Alphard
4.6.3 Semantics

A with expression provides a local shorthand for complicated invocations. The phrase
with x:R in $ i
causes elaboration of R, binding of x to R, and eiaboration of S with that binding. if the <block> is a
single expression, the with expression yields a vaiue (the vaiue of the <block?).

4.7. First Expression

4.7.1 Syntax

<first expression> u= first<template> suchthat <expression> {then<block>}® {gise <block>}" ti
<template> - <identifier> from {<identifier>:}*<type description> | <identifier> from <invocation>

4.7.2 Examples
first i from upto(1,n) suchthat A(i]>max then max := A[i]; jmax := i fi
y :® first x from invec(A) suchthat x>max then x eise O fi

4.7.3 Semantics

The first expression invokes the generator specified in its template (see section 5.1 1) to
produce a sequence of values. These values are tested in turn by the suchthat clause, which must be
a boolean expression and which may not have observabie side effects. If the first expression

first x from g:Q suchithat B then S aise Sy fi
occurs in a context where a value is not required, its semantics are precisely those of the stateament

L1:begin
L2: begin
var g:Q; &start(g);
do
if &done(g) then &finish(g); leave L2 fi
with x:&value(g) in it B then S;&finish(g); leave L1 fi ni
&next(g)
od
end L2
S2
end L1

where &start, &done, etc. are provided by the form {or generator) Q (see aiso sections 4.8
and 4.9). If either the then or the eise clause is absent, it defauilts to skip (see section
4.10). It "g:" is absent, an eisewhere unused identifier is substituted by the compiler. If the
full type in the template is absent, the declaration (var g:Q) is omitted; in such cases an existing
instantiation (namely “g") is used.

Note that the statement Sy in the expansion above is outside the scope of the deciarations of g and
x; neither of these may be referenced in Sp.

It the first expression occurs in a context requiring a value, Sy and Sy must both be present and be
single expressions of identical type (say T). in these contexts, the semantics are precisely those of
value t:T of first x from g:Q suchthat B then t:= S, eise t:sS5 fi fo

An informal Definition of Alphard 25
4.8. Loop Statements

4.8.1 Syntax

<loop stmt> uw <simple loop> | <while stmt> | <for stmt>
<simple loop> - do “block> og

<while stmt> e whilg <expression> <simple loop>

<for stmt> ne for <template> <simpie loop>

4.8.2 Examples

do
if x=y then exitloop ti
Ex)yg_e_nx:-x-y ﬁgy:-y-xﬂ
od

while x#nil do P(car(x)); x :* cdr(x) od
for x from invec(a) do x := 0 od

4.8.3 Semantics

The simple loop; "do S od*, executes S repeatedly; it will terminate only if an exit command (see
section 4.9) is executed. The while loop, "while 3 do S od®, is semanticaily equivaient to
go if not(B) them exitioop fi; S od
The for ioop, “for x from g:Q do S od", is sementicailly equivalent to
begin
var 9:Q; &start(g)
do
if &done(g) then @xitioop fi
with x: &value(g) in S ni
&next(g)
od
&finish(g)
end

As in the first expression (section 4.7), if "g:" is absent, an elsewhere-unused Identifier is substituted

by the compiler. If the tull type in the template is absent, the deciaration (m 9:Q) is omitted and an
existing instantiation is used.

4.9. Exit Statements
4.9.1 Syntax

<exit stmt> e exitlogp | leave <identitier>

4.9.2 Examples
leave L
8xiticop
See aiso sections 4.8 and 4.7.

26 An Informal Definition of Alphard

4.9.3 Semantics

The statement "leave L" occuring within a statement labeled "L" (or a routine named "L") causes
evaluation of the innermost such statement (routine) to terminate; execution resumes at the point it
would have if the statement (routine) had terminated normaily. (Note: if the relative nesting of the
labeled statement is such that, had the leave not been executed, objects would have been
dealiocated and final clauses executed, these same deallocation actions and finalizations are
performed in the same order as part of the I_ci\g.)

An exitloop causes termination of the innermost loop statement (do, while, or for, section 4.8)
containing the exitloop.

4.10. Null Statement

4.10.1 Syntax

<null stmt> - skip

4.10.2 Semantics

The nuli statement does nothing.

4.11. Inner block

4.11.1 Syntax

<inner block> ne Regin <block> end | begin <block> endot {<identifier>}®

4.11.2 Semantics
The deciarations and statements of the block are executed as given in section 4.1. If the optional

identifier is present, it must match the label of the inner block or the name of the routine whose body is
the inner block.

4.12. Assert Statement

4.12.1 Syntax
<assert stmt> ue 8sert <assertion>

4.12.2 Examples
do assert {GCD(x,y) » GCD(s0,y0));

if x=y then exltm fl
if x>y then x ~:s y else y -:s x fi

| .

An Informal Definition of Alphard 27

4.12.3 Semantics

An assert statement indicates a condition that must be true when control passes through the
statement. It has no semantic effect. The syntax of <assertion) is not specified by the language
(other than that the assertion text must be enciosed in, and balanced in brackets, *{...}"). It is the
province of a verifier or verifying compiler only.

238 An Informal Definition of Alphard

Chapter 5§
Declarations

Declarations define routines (proc, vproc, func, and sel declarations) and classes of types (form
deciarations), specify the instantiation of objects (var, const), and bind Identifiers to these entities.

B,i . Scope of Declarations

The scope of a declaration -- the program text in which the binding it establishes is valid -- depends
on the kind of declaration and the place it appears. In the sequel, normal Algol scope means the
innermost block containing the declaration, including all biocks it encloses that do not redefine the

identifier. Restricted Algol scope is the same as normal Algol scope, but excludes the text of routine
and form declarations.

Generally identifiars naming routines and forms obey Algol scope rules; identifiers naming objects
(i.e., variable names) obey restricted Aigol scope. Thus, no free variable names appear in routine or
form bodies; ail variables are either locaily declared or passed in through the parameter list. A few
additional scope restrictions are discussed later.

5.2. Auxiliary Declarations

Any declaration may be preceded by the keyword aux. |dentifiers defined in such declarations may
not be used (except within the assertion language). Auxiliary declarations serve as modeling tools in
the specifications; the entities described by such declarations may or may not exist in the
implementation. If such entities do exist, they may be implemented in a manner different from that
described in the aux deciaration. (Note, however, that the clause as specified may be used in an
implementation to force precisely the representation appearing in an aux definition of an entity).

An auxillary declaration of a boolean-valued function, for example, might be conveniently used to
express a condition that is useful for verification or specification purposes. No obligation to actually
implement this function (whose impiementation might be undesirable or impractical in some
environments) is implied by the aux declaration. Consider, for example, the form:

form DirectedGraph(size:int) is

specs

aux func IsTree(g:DirectedGraph):boolean
post { returns true iff g is a tree);
end DirectedGraph;
This form provides the predicate "IsTree" which tests an arbitrary directed graph for treeness; since
the predicate is specified aux it can only be used in specifications, not in code.

—

-

. g

. An Informal Definition of Alphard 29
8.3. Remote Definitions

Occasionally the detailed implementation of an entity (variable, routine, or form) may appear at a
point remote from its declaration. The following important cases arise:

1. forward: It may be necessary to mention an entity before is defined; this is logically
necessary in mutually recursive routine and form definitions. A forward indicates that the
required definition appears later in the current program text.

2. as specified: in the implementation of a form it may be desirabie to define an implementation
of an entity to be identical to its specification; such definitions are denoted as specified.
Somewhat similarly, a form implementation may mention an (object) parameter of the form,
describing it as specified, to denote that a run-time representation of the parameter is to i
exist.

3. externai(<system specs>): The definition of some entities may be defined external to the
present program text, e.g., on a "file" or a "library" supported by the host system. In such
cases the entity may be defined as axternal. The <{system specs is a system-dependent
notion (and syntax) that describes the place where the definition is to be found (e.g, in a 3
particular "file"). 1

8.4. Label Declarations

§.4.1 Syntax
<label dect> u- labei <identifier list>
5.4.2 Examples
label L1, EXIT, Rethink;
8.4.3 Semantics
Labels, like all other identifiers, must be declared before use. A label may be "placed” (used to label

a statement) only once in the scope of its declaration.

5.5. Object Declarations

§.5.1 Syntax

sesca -

<var decl> ae <auw> var (<obj decl group>{<init fin clause>)®) 3
<const decl> i <sux> const {<obj decl group> {<init fin clause>}® | <const sssign>),
<aux> me (qga)®

<obj decl group> e <identifier list> : <ob) type>

<obj type> uw <type description> | g3 specified

<init fin clause> ue = <gxpression> | {init<stmt>}® {fingl <stmi>}®

<const assign> um <identifier list> = <gxpression>

30 An informal Definition of Alphard

§.5.2 Examples
var a,b.c:int, g:real
8ux const a:int = 5
var INF:tile(vector(mumbie, 1,unk)) init open(INF)
var q,x.r:as specified
var Q:queue(int) init new(Q) final destroy(Q)
const ADD=Q, SUB=1, MULT=2

65.5.3 Semantics

Object declarations may occur inside form declarations or in blocks; their meanings in the two
contexts differ. See section 5.9 for a discussion of their meanings in form declarations.

In blocks, object declarations have restricted Algol scope (see section 5.1). Semantically, constant
deciarations (<{const deci>s) ditfer from variabie declarations ({var decids) only in that, cutside the

initialization and finalization clauses, Update(c) is empty for ¢ a constant; for variables the update set
is determined from the (type description).

The <obj dec! group)>s within an object declaration are processed in unspecified order (note,
| however, that deciarations are processed in left-to-right order; thus the programmer may impose an
' ordering if that is appropriate). For each group, the full type is evaluated, and for each identifier, a

new object of that type is instantiated and bound to the identifier. if an init clause is present, it is
| executed. The declaration

. oX,y,2:T=E
is equivaient to :
<o Xy,2:T init x:sy:=32:2€

If *:T" is absent (from a constant declaration), as in "const asS", the type is that of the expression to
L the right of the equal sign.

A final clause, if present, is executed just before dealiocation of the variables or constants with

which it is associated. Deallocation is aiways in reverse of the (possibly unspecified) order of
creation.

Objects may be designated "as specified” only in form implementations (section 5.9). This
| indicates that the <type description) is to be copied from the torm specifications.

An <init fin clause) in a constant declaration can be omitted only in the specifications part of a form
r (see section 5.9).

| 6.6. Evaluation of Type Descriptions

‘ <{type description>s are syntactic entities which appear in object declarations and formal parameter
| specifications.

An informal Definition of Alphard 31

§.6.1 Svntax

<type description>

<simple invocation> { ({<formal quai>};) }* {<update sst>}* |
<identifier>{<update set>}*

<formal qual> u- <expression> | ?<identitier>{<update set>}* | (<identifier>:}® <type description> |
yunk
<update set> um < { <identifier> | <special identifier> }; >

Note that the outer <)>'s in the definition of <update set> are part of the language, not metabrackets
(see examples below).

§.6.2 Examples
integer
vector(real,1,10)
stack(T:form<&:=>,22)
collection(unk)
queue(process,?length)

5.6.3 Semantics

The <simple invocation> (see 4.3) must designate a unique form (*$" qualification ailows duplicate
nested form definitions). Disambiguation on the basis of argument types is not performed.

Elaboration of a <type description), T(€11.487)<P 1 1Py, Proceeds as follows '3 :
1. The e; are elaborated in an undefined order. The resuits of this elaboration are objects,
routines, and types. The following special cases should be noted:

a. The elaboration of unk is unk.

b. The elaboration of ?identifiers implies an implicit binding; it is illegal It this is not in
the context of a formal/actual parameter matching.

2. The number of formal parameters of T must be n (n20). The actuals must match the formals
of T (see section 2.4). It Is an error if they do not.

3. Each object actual is handled as in section 4.3.3.

The sequence of routines, types, objects, and unk markers produced by the preceding

becomes the Qual property of the resuit type. T is the Base type (see section 2.2). The Py
become the update set.

The <update set> defines the update set of the type description (see 2.2). The listed identifiers
must be names of routines declared with the base type. Only these routines and routines with no visible
effects may be applied to the object within the scope covered by the declaration in which the type
description appears. in the case that the update set is attached to a 7\dentifier or a {type formal>,
the listed identifiers must be further specified in an “assumes clause” (see 5.12) un/ess they

13Noto that an implementation may require compile-time elsboration of those type descriptions used as formal
parameter specifications.

|
|
{

32 An Informal Definition ot Alphard

are <{special identifier>s such as "&=a". The assumptions about <{special identifier>s are uniform and
-are included in appendix C. If no <update set> is given it Is assumed to contain the full
update set of the type; the {update set> "<{O" denote the.empty set.

5.7. Formal Parameters

Certain entities -- forms and routines -- can be parameterized. Formal parameters specify these
parameterizations. The process of determining whether a given sequence of actuals conforms to the
sequence of formal parameters Is known as matching or type checking. This process binds actual
parameters to the corresponding formal parameters. It may also cause certain implicit bindings of
identifiers marked with a "?" lexeme in the formals; these identifiers are implicit parameters with the
same scope as ordinary formais. The implicit bindings are in effect whenever the explicit bindings of
ordinary formais are.

The scope of a formal parameter to a routine is the text of the parameterized declaration, in the
"restricted Algol scope" sense. That is, the scope of a formal does not inciude routine or form
declarations within the parameterized routine text.

The scope of a formal parameter to a form is at most the text of the parameterized form declaration:
it is also subject to "restricted Aigol scope". In addition, unless explicitly redeclared in the impl
(specifically, redeclared as specified), the scope of form formais is limited to the specifications and
object declarations (including init clauses) of the form other than shared objects.

§.7.1 Svyntax

<formals> - ({<routine formal> | <binding><obj formal> | <type formal>}f)

<routine formal> i <formal id list> proc <parms> | <formal id list> {vproc | fync | sei}<v parms>
<binding> == {copy | {alias)*{ const | var} }*

<formal id list> - <identifier list> :

<obj tormai> - <formal id list> <type description>

<type formal> - <formal id list> { form | ptorm }{<update set>}*®

§5.7.2 Examples
(const x:T1, var q:7T2, copy r:vector(?72,1,n))
(T:form, h:proc(x:real):int)

5.7.3 Semantics

Formal parameters give the specifications of allowable actual parameters and provide local names for
these parameters. A <routine formal) indicates a parameter position to be filled with a procedure or
selector. A {type formal)> indicates a position to be filled by a type description. An <ob) formail>
indicates a position to be filled by an object. The association of actual parameters to formais is
determined positionally.

The specification of an object parameter may be preceded by a qualifier that controls the binding of
actual to formal; the possible qualifiers are copy, const, var, and alias. The qualifiers const and var
denote "by reference"” parameters; in both cases the parameter name is bound to the actuai parameter
object. const parameters (like names declared in caonst object deciarations), have an empty update
sat. As specified in section 4.3, the qualifier copy indicates that a local object is to be Instantiated

An Informal Definition of Alphard 33

and initialized from the actual by copying using the &:= operation defined for the type. The update set
of copied parameters is set to empty, hence they may be used only for input. The qualifier alias has no
semantic effect. It indicates that a reference parameter may overlap other reference parameters;
uniess the alias qualifier is present, overiapping referance parameters are prohibited.

For type formals the actual type description must be a full type if the formal is specified as a form. It
may be a full or partial type if the formal is specified as a pform.

If no <binding> is specified, const is assumed. it should be noted that for routine parameters not
qualified by alias, the compiler assumes that the semantics of const and copy are identical14 -- hence
the compiler is free to copy const parameters if it seems desirable to do so. This statement is not true
for forms or in the presence of alias, and the optimization may not be performed in those cases.

The notation
a,b,c:T
is short for
a:T, b:T, c:T

ldentifiers precedad by "?" are implicit formais. One binding is established for the identifier during
matching, no matter how often it appears. it is an error if it is not possible to ¢stablish such a binding.
All instances of the identifier inside a given (formais) list must be preceded by "?*".

5.8. Routine Declarations

Routines encapsulate computations. A routine (proc, veroc, !E"_‘i) may or may not return a resuit
object. if it does, the update set of the compiler-generated name bound to the returned object is
always null, there can be no effects on a procedure resuit. A selector always has a result and must
not have effects; unless explicitly restricted, the {update set> of a selector resuit is the full update
set of the base type. Except within form specifications (section 5.9), routine deciarations
have normal Algol scope.

5.8.1 Syntax

<routine dect> nw <vproc decl> | <proc decl> | <sel decl>

<vproc decl> ne <aux> {inline}® {yprog | funci<routine id> <v parms> <pre post> <assumes>
{<routine body>}*

<proc deci> EL <aux> {iniine}® proc <routine id> <parms> <pre post> <assumes> {<routine body>}*

<sel dec!> e <aux> {inline}® sei<routine id><v parms> <pre post> <sssumes> {<routine body>}*

<routine id> - <identifier> | <special identifier>

<parms> uw {<formais>}®

<v parms> 1w {<formals>}*<type description>

<pre> um {pre <assertion>;}®

<pre post> - <pre> (pgst <assertion>;}*

<routine body> - is <stmt> | is as specified | is forwa d | is external (<system specs>)

18 This assumption is valid only so long as user-defined assignment operators, “%:=", preserve the intended
meaning. The compiler cannot enforce the correctness of any user-defined operastion, and specificaily not that of
"&:=". Thus there is an additional verification condition on the definition of esch &:= to ensure the necessary
properties.

34 An Informal Detinition of Aiphard

‘6.8.2 Examples

vproc f(x:int):real
pre {abs(x)<maxintreai};
Is float(x);

inline sel triang(var A:vector(?T,1,7n), i,j:int):T
Is A[i"(i-1) div 2+j]

proc empty is as specified

5.8.3 Semantics

Selectors (declared 53!_) name objects. Procedures (declared g!o_g) produce effects but do not
return values. Value-returning procedures (deciared vproc). may produce effects and also return
values (actually objects). Functions (declared func) are semantically equivalent to vproc's except that
they are deterministic'S and do not have observuble effects on their parameters. The <stmt)> portion

of the <routine body> of a vproc or func must be a single expression of the type returned by the
routine.

The qualifier inline has no semantic effect. it indicates that the compiler should make the declared
routine “open" -- i.a., produce a copy of the object code at each invocation site.

The pre and post clauses have no semantic effect, but are specifications of the routine's behavior.
The pre clause gives conditions which will be true at entry; past gives conditions at routine exit (the
keyword result is conventionaily used in post conditions to specify the vaiue returned).

The routine body may be absent only in form specifications (see 5.9). It may be given "as
specified" only in form impiementations; this indicates that the body is to be carried down from the
specifications. The routine body may be specified as forward if its declaration appears later in the
same <block>. The body may be specified as external if the text of the definition is to be found in the
system-dependent entity specified by {systam specs).

The formal parameter lists and result types must be omitted in form implementations if the same
routine (name) is declared in the specifications of the form. They are copied from the declaration of
the routine in the specifications.

The assumes clause (see section 5.12) declares generic parameters (implicit and explicit).
Throughout the text of the routine declaration, only those properties declared in the assumes clause
are used in testing syntactic and semantic validity.

As stated previously, identifiers that name objects observe restricted Aigol scope. Thus, the body of
a routine cannot access objects declared outside itseif uniess they are passaed through the parameter
list. Also, as stated previously, the objects named by distinct formal parameter names cannot overiap
uniess they are explicitly qualified with alias.

15 That is, invocations with equal inputs yield equal qutputs. Mare precisely, for F to be a fync, &=(A,3) must
imply &=(F(A),F(B)).: If &= is not defined, invocations with identical inputs must have identical outputs.

M aa- o aa et Al L a

i

r————

et hana B | o aa o adl e

An Intformal Definition of Alphard 35
8.9. Form Declarations

Forms define classes of types. There is one form declaration for sach base type. Identifiers
declared in form declarations have normal Algol scope.

5.9.1 Syntax

<form decl> ne <aux> form <identifier>{<tormals>}® <pre><assumes> is <form body>

<torm body> e {<specs>}*{<impl>}® end {<identifier>}* | <abbrev body> | forward | externsi
(<system specs>) | 33 specified .

<specs> nw specs { <var decl> | <other form decls> };

<impl> - impl { <shared> <var deci> | <other form decls> };’

<other form decis> = <routine decl> | <form deci> | <axiom>| <shared> <const decl>

<shared> B shared®

<axiom> - invariant <assertion> | initially <assertion> | axiom <assertion> | repmap

<assertion> | ryle <identifier> <assertion>

5.9.2 Examples
form F(T:form, x:int) is

specs

var m:int;

vproc p(f:F):T pre {m<x} post {(m>x}; ...
imet

const x:as specified
var m:as specified;
vproc p is F.m:3F.x+1; ...
end .

5.9.3 Semantics

The -names defined in the specifications (<specs>) of a form are available outside the form
declaration. The scope of these names is the same as if they had been declared immediately outside
the form, except that var and const declarations become routine declarations as described below. The
scope of the names in the specifications does not include the implementation (<impl>). Note, howaver,
that all these names must be redeclared in the implementation. The implementation may be omitted if
the form declaration appears as part of the specifications of another form. The specification may be
omitted if the declaration appears in the impiementation of another form, in which case It is copied from
the specifications of the containing form.

The scope of object names appearing in the formal parameter list of the form is restricted to the
specs and <var decis) of the <form body) unless they are explicitly redeclared (2 specified) in the
impl. In the latter case a run-time representation of these objects becomes part of the implementation
of objects instantiated from the farm. In such cases it is also possible for these names to be mentioned
(again as specified) in the specs, and hence to be externally available. These redeclarations in the
impl and specs must be compatible with the <binding> of the formal parameter; that Is, an identifier
redeclared var must aiso have a var <binding> (an identifier redeclared const may have a var, const, or
copy <binding>).

Objects declared in a form usually become the concrete components of the objects that result from
instantiating the form; there are thus distinct instantiations of these objects for different instantiations
of the form. An exception occurs when a declaration is prefixed by by the modifier shared: A single

36 An Informal Definition of Alphard

instantiation of a shared object is common to all instantiations of the form. In particular, it makes
perfect sense to define a shared const of a given type within the definition of that type. Such a
constant functions as a named literal of the type.

<Axiom>s have no semantic effect, but provide further specifications.

Non-shared constant and variable declarations within form specifications are shorthand for certain
procedure and selector declarations. That is,
m Wi
var P:Q
const A:R
is short for
fo_rnl)
sel P(var t:T):Q
func A(t:T):R

In the implementation, object dectarations again become selector and procedure declarations as
follows. When an object of base type T is Instantiated, the object deciarations in its implementation
are elaborated as usual (and the init clauses are performed). This resuits in a set of newly created
objects which become the concrete components of the object being created. These components may
be accessed within the bodies of the routines in the implementation by using implicit seiectors
(procedures) with the same names as thosae given in the object deciarations. Thus, we can write

form T...
impl
var x:int;
proc f(Q:T) is ... Q.X ...
That is, inside f, “x" is treated as a selector on objects of type T and is applied to the formal
parameter, Q, to access the x-component of the particular actual. Note in particular that "x", like all
object names, obeys restricted Algol scope and hence is not inherited by the body of the proc, f.

5.10. Abbreviations

Abbreviated form body definitions are provided for two commonly occurring kinds of abstractions,
"records" and ordered "enumerated” types.

§5.10.1 Syntax

<abbrev body> e <record type> | «mmnt‘od type>
<record type> um record ({<obj decl group>},)
<enumerated type> enymerated (<identifier list>)

5.10.2 Examples
record (re.im:reai)
raecord (x,y:int, load:real, theta:radians)
enumerated (red, biue, green, purple, bardot)

-

An Informal Definition of Alphard 37
§.10.3 Semantics

The declaration
form F(...) is record (d,dp,....dy)
is semantically equivalent to
form F(...) is
specs
ﬂ 61. cosy dk;
func cons(dy, ..., dg): F(...);
func %=(lhs,rhs:F): boolean;
vproc &:=(var lhs,rhs:F): F(...);
imp)
m d1 s esey dk:
tunc cons is
value v:F(...)
of note assign to components of v eton fo
func &= is note compare components for equality eton
voroc &:= is note assign rhs to lhs component-by-component eton
end F
In addition, all parameters of F are converted to “?identifiers” when they appear in formal parameter
lists of "cons", "&=", or "&:=".

The declaration
form C is enumerated (iq,...,Ilp)
is semantically equivalent to

form C is
specs
shared const iq, ..., I5:C; ! distinct constants;
func &= ..; ! equality test
vproc &:s ...; ! assignment
func min ...; ! minimum element (siq)
func max ...; ! maximum element (=i,)
func suce ...; ! successor (not detined on i)
func pred ...; ! predecessor (not defined on I4)
tunc card ...; ! cardinality of enumeration (=n)
func decode ...; ! converts element to its ordinal (e.g., decode(i3)=3)
func code ...; ! converts ordinal to element (e.g., code(2)=iy)
func spell ...; ! convert element to stringlet (its printname)
func unspeil ...; ! convert stringlet (printname) to element
generator gen ...; ! generatas elements in order (iq ... i)
end C

§.11. Generators

Generators are specialized forms. They are useful for defining objects that will be bound to the
control variables of the for and first constructs (see 4.7, 4.8). (Any form may provide such objects,
but their use is sufficiently constrained by the language that special abbreviated syntax is provided
for defining forms intended specifically for this purposse.)

38 An Informal Definition of Alphard

8.11.1 Syntax

<form decl> - <aux> generator <identifier> {<formals>}® : <type description> <pre> <assumes>
ig <form body>

5.11.2 Example
generator upto(ib,ub:int): int is
specs
pre {ubsmaxint-1 A Ib2minint}
aux var k:intzub+1;
rule for
{premise ISk<u A K[L.k=1]) {ST(k))} K[L.k])
concl I([]) {for k from g: upto(l,u) do ST(k) od} I([l..u])}
rule first
{premise P A ISksSu A (Yw)(ISw<k 2 ~4(w)) A L(k) (S1(k)} Q
premise P A (Yw)(iSwsu 2 ~4(w) {S2} Q
conc! P {first k from g: upto(l,u) suchthat (k) then S1(k) eise S2 fi} Q}
impl
var'k: as specified;
const Ib,up: as specified;
func &done is g9.k>g.ub;
sel &value is g.k;
proc &start Is g.k:=g.lb;
proc &next is g.k+:=1;
proc &finish is g.k:zg.ub+1;
endof upto
Note that in this example we have chosen to ignore statement and predicate parameters other than k.

5.11.3 Semantics

In order to generate loop control variables, a form must provide definitions for the routines &start,
&next, &done and &value. A definition of the routine &finish is optional. if no definition is provided for
&finish, the compiler will provide (1) an appropriate header, (2) the body skip in the specifications, and
(3) the body as specified in the implementation. Rastrictions on the definitions of &done, &start,
&next, &finish, and &vaiue are provided in appendix C.

A distinguished class of forms defining objects for controlling loops is designated by the reserved
word generator and the syntax indicated above. This class is significant because the behavior of these
objects is sufficiently constrained to be specified by a proof rule. Necessary properties of the
specifications of the generator routines can be derived from the proof rules and the constraints 16 . As
a re<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>